

Introduction

Kiswire is the largest wire rope manufacturer in the world with 60 years special experience. Kiswire's special experience & comprehensive know-how made it possible to introduce 'hyrope series' which enables us to approach to the special wire rope market and finally become a strong player in this area. 'hyrope series' are made of the finest raw materials available, featuring excellent mechanical characteristics which conform to the requirements of the special wire rope market.

To keep up position in the SWR-market and to play the role of market leader in the future, Kiswire is investing into hyrope with large extent by dedicating a R&D team on a permanent basis for the SWR-market. Kiswire will never rest.

Advantages of Hyrope

- Excellent strength to weight ratio
- Long fatigue life
- Good abrasion and wear resistance
- High torsional strength
- Easy rope handling
- Excellent corrosion resistance
- Reliable quality assurance

Contents

While 6&8 Non rotation resistant hoist rope with compacted outer strands for container handling cranes, steel mill cranes, mobile harbour cranes, overhead travelling cranes, boom hoist applicantions, ...

Hyfil T6

6-strand non rotation resistant rope with compacted and rotary swaged strands. Suitable as hoist rope for cranes with guided loads working in multiple layer on the drum, such as boom hoist ropes for mobile cranes, crawler cranes, grap applications etc. Can also be uesd as hoist rope for container handling cranes, overhead travelling cranes, ...

Hyfil T8

8-strand non rotation resistant rope with compacted and rotary swaged strands. Suitable as hoist rope for container cranes, steel mill cranes, boom hoist applications, etc. Very high breaking strength and most suitable for multy layer spooling devices.

Hyfil 12

Rotation-resistant rope, suitable as hoist rope for mobile cranes, tower cranes, crawler cranes piledriving equipments, ...

n9

Hylift 16 Rotation-resistant rope, suitable as hoist rope for mobile cranes, tower cranes, crawler cranes piledriving equipments, .

Hyfil 18

Rotation resistant rope, suitable as hoist rope especially for cranes working in marine enviroment such as deck cranes, offshore cranes, ...

Plastic Layer Bending Fatigue

Torque Factor

- Wire Quality - Compacted and rotary Swaged Strands - Comparison of Breaking Load

• Benefits of Hyfil 6

- Hyfil 6 has a plastic layer between the core and the compacted outer strands.
- Hyfil 6 has a high breaking load and good structural stability.
- Hyfil 6 is fully lubricated and made out of galvanized/ungalvanized wires.
- Hyfil 6 is suitable for multy layer spooling
- Hyfil 6 has a good resistance against drum crushing. Hyfil 6 must not be used with a swivel.

Discard criteria

The basic designed data of hyfil 6

(The number o	f brook in the	load boaring	wiroo in outo	r atranda)	
(The number o	I Dieak in the	Ioau bearing	whes in oute	stratius)	Size
1	Regula	ar Lay	Lang's	s Lay	Total r
Length	6xd	30xd	6xd	30xd	Numbe
	0.00	00/10	0.00	00/10	The nu
discard	14	29	7	14	Avera

	Size	12~ 34	12~ 38	12~ 45
	Total number of wire	205	235	265
_	Number of load-bearing wires in outer strands	156	186	216
-	The number of outer wire in outer strand	60	72	84
_	Average fill factor		0.68	

Nomir	nal rope	Diar	neter	Appro	ximate	e Minimum breaking force (Fmin, MBF)							
dian	neter	toler	ance	unit	t Wt.		Mert	ic unit			Imperia	l unit	
		min.	max.	1		196	0 Grade	2160	Grade	1960 Grade		2160 Grade	
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	kN	t(metric)	klb	t(short)	klb	t(short)
12		12.0	12.5	0.680		120.7	12.3	128.0	13.0				
(12.7)	1/2	12.7	13.2		0.51					30.4	15.2	32.2	16.1
13		13.0	13.5	0.798		141.6	14.4	150.2	15.3				
14		14.0	14.6	0.926		164.2	16.7	174.2	17.8				
(14.3)	9/16	14.3	14.9		0.65					38.5	19.3	40.9	20.4
15		15.0	15.6	1.06		188.5	19.2	200.0	20.4				
(15.9)	5/8	15.9	16.5		0.81					48.2	24.1	51.1	25.6
16		16.0	16.6	1.21		214.5	21.9	227.5	23.2				
18		18.0	18.7	1.53		271.5	27.7	288.0	29.4				
19		19.0	19.8	1.71		302.5	30.8	320.8	32.7				
(19.1)	3/4	19.1	19.9		1.15					68.0	34.0	72.1	36.1
20		20.0	20.8	1.89		335.2	34.2	355.5	36.2				
22		22.0	22.9	2.29		405.5	41.4	430.2	43.9				
(22.2)	7/8	22.2	23.1		1.56					92.8	46.4	98.5	49.2
24		24.0	25.0	2.72		482.6	49.2	511.9	52.2				
25		25.0	26.0	2.95		523.7	53.4	555.5	56.6				
(25.4)	1	25.4	26.4		2.05					121.5	60.8	128.9	64.4
26		26.0	27.0	3.19		566.4	57.8	600.8	61.3				
27		27.0	28.1	3.44		610.8	62.3	647.9	66.1				
28		28.0	29.1	3.70		656.9	67.0	696.8	71.0				
(28.6)	1-1/8	28.6	29.7		2.60					154.1	77.0	163.4	81.7
29		29.0	30.2	3.97		704.7	71.9	747.4	76.2				
30		30.0	31.2	4.25		754.1	76.9	799.9	81.6				
31		31.0	32.2	4.54		805.2	82.1	854.1	87.1				
(31.8)	1-1/4	31.8	33.1		3.25					192.9	96.4	204.6	102.3
32		32.0	33.3	4.84		858.0	87.5	910.1	92.8				
33		33.0	34.3	5.14		912.5	93.0	967.9	98.7				
34		34.0	35.4	5.46		968.6	98.8	1,027.4	104.8				
(34.9)	1-3/8	34.9	36.3		3.89					230.7	115.4	244.7	122.4
35		35.0	36.4	5.79		1,026.4	104.7	1,088.7	111.0				
36		36.0	37.4	6.12		1,085.9	110.7	1,151.8	117.4				
38		38.0	39.5	6.82		1,209.9	123.4	1,283.4	130.9				
(38.1)	1-1/2	38.1	39.6		4.58					272.0	136.0	288.5	144.2
40		40.0	41.6	7.56		1,340.6	136.7	1,422.0	145.0				
(41.3)	1-5/8	41.3	43.0		5.15					305.8	152.9	324.4	162.2
42		42.0	43.7	8.33		1,478.0	150.7	1,567.8	159.9				
44		44.0	45.8	9.14		1,622.1	165.4	1,720.6	175.4				
(44.5)	1-3/4	44.5	46.3		6.29					373.0	186.5	395.6	197.8
45		45.0	46.8	9.57		1,696.7	173.0	1,799.7	183.5				

vfil 8 PI •

• Benefits of Hyfil 8

- Hyfil 8 has a plastic layer between the core and the compacted outer strands.
- Hyfil 8 has a high breaking load and good structural stability.
- Hyfil 8 is fully lubricated and made out of galvanized/ungalvanized wires.
- Hyfil 8 is suitable for multy layer spooling
- Hyfil 8 has a good resistance against drum crushing. Hyfil 8 must not be used with a swivel.

Discard criteria

(Ine number of break in the load bearing wires in outer strands) Length Regular Lay Lang's Lay 6xd 30xd 6xd 30xd dispard 19 25 0 19						
Longth	Regula	ar Lay	Lang's	s Lay		
Length	6xd	30xd	6xd	30xd		
discard	18	35	9	18		

• The basic designed data of hyfil 8

Size	12~ 42	42~ 48	42~ 54
Total number of wire	341	381	421
Number of load-bearing wires in outer strands	208	248	288
The number of outer wire in outer strand	80	96	112
Average fill factor		0.67	

Nomi	nal rope	Diar	neter	Appro	ximate			Minin	num breakin	g force (Fm	in, MBF)			
diar	neter	toler	ance	uni	t Wt.		Mert	ic unit			Imperia	l unit		
		min.	max.	1		196	0 Grade	2160	Grade	1960 0	Grade	2160	2160 Grade	
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	kN	t(metric)	klb	t(short)	klb	t(short)	
12		12.0	12.5	0.660		126.7	12.9	135.5	13.8				, ,	
(12.7)	1/2	12.7	13.2		0.50					31.9	15.9	34.1	17.1	
13	.,_	13.0	13.5	0.775		148.7	15.2	159.0	16.2			•		
14		14.0	14.6	0.899		172.4	17.6	184.5	18.8					
(14.3)	9/16	14.3	14.9		0.63					40.4	20.2	43.3	21.6	
15		15.0	15.6	1.03		197.9	20.2	211.7	21.6					
(15.9)	5/8	15.9	16.5		0.79					50.6	25.3	54.1	27.1	
16	0/0	16.0	16.6	1.17		225.0	22.9	240.7	24.5			•		
18		18.0	18.7	1.49		284.7	29.0	304.6	31.1					
19		19.0	19.8	1.66		317.2	32.3	339.4	34.6					
(19.1)	3/4	19.1	19.9	1.00	1 1 1	017.2	02.0	000.1	0 1.0	71.3	35.7	76.3	38.1	
20		20.0	20.8	1.83		351.5	35.8	376.1	38.3					
22	1	22.0	22.9	2.22		425.3	43.4	455.0	46.4					
(22.2)	7/8	22.2	23.1		1.52	120.0				97.4	48.7	104.2	52.1	
24	110	24.0	25.0	2.64	1.02	506.2	51.6	541.5	55.2	57.4	40.7	104.2	02.1	
25		25.0	26.0	2.04		548.7	55.9	587.0	59.2					
(25.4)	1	25.4	26.4	2.07	1 99	040.7	00.0	507.0	55.5	127.3	63.7	136.2	68.1	
26		26.0	27.0	2 10	1.00	502.4	60.5	624.9	64.7	127.0	00.7	100.2	00.1	
20		20.0	27.0	3.10		640.0	65.2	694.3	60.9					
29		227.0	20.1	2.50		699.2	70.2	726.4	75.1					
(28.6)	1.1/9	20.0	20.7	3.33	2.52	000.2	10.2	730.4	73.1	161.4	80.7	172.7	86.4	
(20.0)	1-1/0	20.0	20.7	2.96	2.52	700.0	75.0	790.0	90 E	101.4	00.7	172.7	00.4	
29		29.0	30.2	3.00		730.3	75.5	709.9 04E 0	00.0					
30		30.0	20.0	4.13		942.6	00.0	040.0	00.2					
(21.0)	1 1/4	31.0	32.2	4.41	2.16	043.0	00.0	902.0	92.0	202.1	101.0	016.0	109.1	
(31.6)	1-1/4	00.0	00.0	4.70	3.10	000.0	01.7	001.0	00.1	202.1	101.0	210.2	100.1	
32		32.0	33.3	4.70		898.9	91.7	961.8	98.1					
33		33.0	34.3	4.99		956.0	97.5	1,022.8	110.7					
34	1.0/0	34.0	35.4	5.30	0.77	1,014.8	103.5	1,085.8	110.7	041.7	100.0	050.0	100.0	
(34.9)	1-3/8	34.9	30.3	5.00	3.77	1.075.4	100 7	1 1 5 0 0	447.0	241.7	120.9	258.6	129.3	
35		35.0	36.4	5.62		1,075.4	109.7	1,150.6	117.3					
36		36.0	37.4	5.94	4.45	1,137.7	116.0	1,217.2	124.1					
38	1.1/0	38.0	39.5	0.00	4.45	1,267.6	129.3	1,356.3	138.3	005.0	1 10 5	004.0	450.4	
(38.1)	1-1/2	38.1	39.6	6.62						285.0	142.5	304.9	152.4	
40		40.0	41.6	7.34		1,404.6	143.2	1,502.8	153.2					
(41.3)	1-5/8	41.3	43.0	0.00	5.26	1 5 10 5	457.6	1.050.5	100.5	336.6	168.3	360.1	180.1	
42		42.0	43.7	8.09		1,548.6	157.9	1,656.8	168.9					
44		44.0	45.8	8.88		1,699.6	1/3.3	1,818.4	185.4					
(44.5)	1-3/4	44.5	46.3		6.10					390.8	195.4	418.1	209.1	
45		45.0	46.8	9.57		1,777.7	181.3	1,901.9	193.9					
46		46.0	47.8	9.70		1,857.6	189.4	1,987.4	202.7			180		
(47.6)	1-7/8	47.6	49.5		6.95					445.3	222.6	476.4	238.2	
48		48.0	49.9	10.56		2,022.6	206.2	2,164.0	220.7					
50		50.0	52.0	11.46		2,194.7	223.8	2,348.1	239.4					
(50.8)	2	50.8	52.8		7.95					509.3	254.6	544.9	272.4	
52	1	52.0	54.1	12.40		2,373.8	242.0	2,539.7	259.0					
54	1	54.0	56.2	13.37		2,559.9	261.0	2,738.8	279.3		1			

• Benefits of Hyfil T6

- Hyfil T6 is a flexible steel-plastic combination rope with double parallel layed strands. All strands are compacted and rotary swaged.
- Hyfil T6 has an extremely high breaking strength and is very resistant against abrasion.
- Hyfil T6 is suitable for multi layer spooling systems with guided loads.
- Hyfil T6 is fully lubricated and made out of galvanized/ungalvanized wires.
- Hyfil T6 must not be used with a swivel.

Discard criteria

The basic designed data of hyfil T6

The number of break in the load bearing wires in outer strands)								
Longth	Lang	's Lay						
Length	6xd	30xd						
discard	19	38						

Ī	Size	12~ 32
	Total number of wire	224
	Number of load-bearing wires in outer strands	156
	The number of outer wire in outer strand	60
	Average fill factor	0.72

• Benefits of Hyfil T8

- Hyfil T8 is a flexible steel-plastic combination rope with double parallel layed strands. All strands are compacted and rotary swaged.
- Hyfil T8 has an extremely high breaking strength and is very resistant against abrasion.
 Hyfil T8 is most suitable for multy layer spooling systems with guided loads.
- Hyfil T8 is fully lubricated and made out of galvanized/ungalvanized wires.
- Hyfil T8 must not be used with a swivel.

Discard criteria

(The number of break in the load bearing wires in outer strands) Length 6xd 30xd					
Longth	Lang	s Lay			
Length	6xd	30xd			
discard	18	35			

The basic designed data of hyfil T8

Size	12~ 32
Total number of wire	290
Number of load-bearing wires in outer strands	208
The number of outer wire in outer strand	80
Average fill factor	0.75

Nomina	al rope	Diam	leter	Appro	ximate	M	Minimum breaking force (Fmin, MBF)		
diame	eter	toler	ance	unit	Wt.	Mertic	unit	Impe	rial unit
		min.	max.			1960 G	irade	1960	Grade
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	klb	t(short)
12		12.0	12.5	0.711		135.6	13.8		
(12.7)	1/2	12.7	13.2		0.54			34.1	17.1
13		13.0	13.5	0.835		159.0	16.2		
14		14.0	14.6	0.968		184.4	18.8		
(14.3)	9/16	14.3	14.9		0.68			43.2	21.6
15		15.0	15.6	1.11		211.7	21.6		
(15.9)	5/8	15.9	16.5		0.85			54.1	27.1
16		16.0	16.6	1.26		240.8	24.6		
18		18.0	18.7	1.60		304.8	31.1		
19		19.0	19.8	1.78		339.2	34.6		
(19.1)	3/4	19.1	19.9		1.20			76.3	38.1
20		20.0	20.8	1.98		375.9	38.3		
22		22.0	22.9	2.39		454.8	46.4		
(22.2)	7/8	22.2	23.1		1.64			104.1	52.1
24		24.0	25.0	2.84		541.3	55.2		
25		25.0	26.0	3.09		587.3	59.9		
(25.4)	1	25.4	26.4		2.14			136.3	68.1
26		26.0	27.0	3.34		635.3	64.8		
27		27.0	28.1	3.60		685.1	69.9		
28		28.0	29.1	3.87		736.8	75.1		
(28.6)	1-1/8	28.6	29.7		2.71			172.8	86.4
29		29.0	30.2	4.15		790.3	80.6		
30		30.0	31.2	4.44		845.8	86.2		
31		31.0	32.2	4.75		903.1	92.1		
(31.8)	1-1/4	31.8	33.1		3.40			216.3	108.2
32		32.0	33.3	5.06		962.3	98.1		

Nominal rope		Dian	neter	Appro	ximate	M	inimum breaking	force (Fmin, MBF)		
diam	eter	toler	ance	uni	t Wt.	Mertic	unit	Impe	rial unit	
		min.	max.			1960 G	irade	1960	Grade	
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	klb	t(short)	
12		12.0	12.5	0.719		144.7	14.8			
(12.7)	1/2	12.7	13.2		0.54			36.4	18.2	
13		13.0	13.5	0.844		169.8	17.3			
14		14.0	14.6	0.979		196.9	20.1			
(14.3)	9/16	14.3	14.9		0.69			46.2	23.1	
15		15.0	15.6	1.12		226.1	23.1			
(15.9)	5/8	15.9	16.5		0.86			57.8	28.9	
16		16.0	16.6	1.28		257.0	26.2			
18		18.0	18.7	1.62		325.2	33.2			
19		19.0	19.8	1.80		362.4	37.0			
(19.1)	3/4	19.1	19.9		1.21			81.5	40.7	
20		20.0	20.8	2.00		401.5	40.9			
22		22.0	22.9	2.42		485.8	49.5			
(22.2)	7/8	22.2	23.1		1.65			111.2	55.6	
24		24.0	25.0	2.88		577.6	58.9			
25		25.0	26.0	3.12		626.8	63.9			
(25.4)	1	25.4	26.4		2.17			145.4	72.7	
26		26.0	27.0	3.38		677.9	69.1			
27		27.0	28.1	3.64		731.0	74.5			
28		28.0	29.1	3.92		786.2	80.2			
(28.6)	1-1/8	28.6	29.7		2.75			184.4	92.2	
29		29.0	30.2	4.20		843.4	86.0			
30		30.0	31.2	4.49		902.5	92.0			
31		31.0	32.2	4.80		963.7	98.3			
(31.8)	1-1/4	31.8	33.1		3.44			230.8	115.4	
32		32.0	33.3	5.11		1,026.9	104.7			

: Available upon request

Benefits of Hyfil 12

- Hyfil 12 is suitable rope for high lifting height application with semi rotation resistance.
 Hyfil 12 has a plastic layer between the inner strands and outer strands
- and all strands are compacted.
- The steel-plastic combination increases structual stability.
- The rope is fully lubricated and made out of galvanized/ungalvanized wires.

Discard criteria

The basic designed data of hyfil 12

(The number of break in the load bearing wires in outer strands)									
Longth	Lang's Lay								
Length	6xd	30xd							
discard	19	38							

 Size
 8~40

 Total number of wire
 361

 Number of load-bearing wires in outer strands
 228

 The number of outer wire in outer strand
 108

 Average fill factor
 0.64

Nominal rope diameter		Diameter		Appro	ximate	Minimum breaking force (Fmin, MBF)							
		toler	ance	unit Wt.		Mertic unit				Imperial unit			
		min.	max.	1		196	1960 Grade		2160 Grade		1960 Grade		Grade
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	kN	t(metric)	klb	t(short)	klb	t(short)
8		8.0	8.3	0.312		53.3	5.4	58.4	6.0				
9		9.0	9.4	0.395		67.5	6.9	73.9	7.5				
(9.5)	3/8	9.5	9.9		0.30					16.9	8.4	18.5	9.3
10		10.0	10.4	0.488		86.3	8.8	94.6	9.6				
(11.1)	7/16	11.1	11.5		0.40					23.5	11.7	25.7	12.9
12		12.0	12.5	0.703		123.1	12.6	134.9	13.8				
(12.7)	1/2	12.7	13.2		0.53					31.1	15.5	34.0	17.0
13		13.0	13.5	0.825		147.7	15.1	161.7	16.5				
14		14.0	14.6	0.956		171.3	17.5	187.6	19.1				
(14.3)	9/16	14.3	14.9		0.67					40.2	20.1	44.0	22.0
15		15.0	15.6	1.10		196.6	20.0	215.3	22.0				
(15.9)	5/8	15.9	16.5		0.84					49.5	24.8	54.2	27.1
16		16.0	16.6	1.25		220.2	22.5	241.2	24.6				
18		18.0	18.7	1.58		276.5	28.2	302.8	30.9				
19		19.0	19.8	1.76		310.9	31.7	340.6	34.7				
(19.1)	3/4	19.1	19.9		1.18					69.9	34.9	76.6	38.3
20		20.0	20.8	1.95		346.9	35.4	379.9	38.7				
22		22.0	22.9	2.36		417.1	42.5	456.8	46.6				
(22.2)	7/8	22.2	23.1		1.62					95.5	47.7	104.6	52.3
24		24.0	25.0	2.81		499.1	50.9	546.7	55.7				
25		25.0	26.0	3.05		540.1	55.1	591.5	60.3				
(25.4)	1	25.4	26.4		2.12					125.9	63.0	137.9	69.0
26		26.0	27.0	3.30		589.0	60.1	645.2	65.8				
27		27.0	28.1	3.56		635.2	64.8	695.8	70.9				
28		28.0	29.1	3.83		679.6	69.3	744.3	75.9				
(28.6)	1-1/8	28.6	29.7		2.68					159.4	79.7	174.6	87.3
29		29.0	30.2	4.10		729.0	74.3	798.4	81.4				
30		30.0	31.2	4.39		777.2	79.2	851.3	86.8				
31		31.0	32.2	4.69		829.9	84.6	909.0	92.7				
(31.8)	1-1/4	31.8	33.1		3.36					198.9	99.4	217.8	108.9
32		32.0	33.3	5.00		884.8	90.2	969.1	98.8				
33		33.0	34.3	5.31		940.9	95.9	1,030.6	105.1				
34		34.0	35.4	5.64		998.2	101.8	1,093.3	111.5				
(34.9)	1-3/8	34.9	36.3		4.02					238.5	119.2	261.2	130.6
35		35.0	36.4	5.98		1,060.8	108.2	1,161.9	118.5				
36		36.0	37.4	6.32		1,125.3	114.7	1,232.6	125.7				
38		38.0	39.5	7.05		1,254.1	127.9	1,373.7	140.1				
(38.1)	1-1/2	38.1	39.6		4.73					281.9	141.0	308.8	154.4
40		40.0	41.6	7.81		1 363 6	139.0	1 493 6	152.3				

• Benefits of Hylift 16

- Hylift 16 is the most suitable rope for high lifting height application.
- Hylift 16 is a rotation resistant rope, and made with compacted both
- parts of outer strands and inner strands
- Hyllift 16 has an extremely high breaking strength with a very strong resistance against drum crushing. - The rope is fully lubricated and made of galvanized/ungalvanized wires.

Discard criteria

(The number of break in the load bearing wires in outer strands)								
Longth	Lang's Lay							
Length	6xd	30xd						
discard	5	10						

• The basic designed data of hylift 16

Size	10~ 40
Total number of wire	245
Number of load-bearing wires in outer strands	112
The number of outer wire in outer strand	96
Average fill factor	0.74

Nominal rope diameter		Diameter		Approximate		Minimum breaking force (Fmin, MBF)							
		toler					Mert	ic unit	0	1000	Imperia	I unit	O Crede
	tu at	min.	max.	li se fan	1. //	196	Grade	2160	Grade	1960 0	arade	2160	Grade
	inch			кg/m	ID/π	KN 01.0	t(metric)	KN 07.0	t(metric)	KID	t(snort)	KID	t(snort)
(11.1)	7/16	11.1	11.4	0.510	0.41	91.8	9.4	97.9	10.0	25.0	10.5	26.6	10.0
(11.1)	7/10	12.0	10.5	0.725	0.41	100.0	10.5	141.0	14.4	23.0	12.0	20.0	13.3
(10.7)	1/0	12.0	12.0	0.735	0.55	132.2	13.5	141.0	14.4	22.2	16.6	25.5	17.0
(12.7)	1/2	12.7	12.5	0.862	0.55	155.1	15.9	165.5	16.0	33.3	10.0	33.5	17.0
14		14.0	14.6	1.00		170.0	19.0	103.3	10.5				
(14.2)	0/16	14.0	14.0	1.00	0.70	179.9	10.3	192.0	19.0	40.0	21.1	45.0	22.5
15	3/10	14.5	15.6	1.15	0.70	206.5	21.1	220.4	22.5	42.2	21.1	43.0	22.5
(15.9)	5/8	15.0	16.5	1.10	0.88	200.0	21.1	220.4	22.0	52.8	26.4	56.4	28.2
16	5,0	16.0	16.6	1.31	0.00	235.0	24.0	250.7	25.6	52.0	20.4	50.4	20.2
18		18.0	18.7	1.65		297.4	30.3	317.3	32.4				
19	1	19.0	19.8	1.84		331.0	33.8	353.2	36.0				
(19.1)	3/4	19.1	19.9	1.01	1.24	001.0	00.0	000.2	00.0	74.4	37.2	79.4	39.7
20		20.0	20.8	2.04		366.8	37.4	391.4	39.9				
22		22.0	22.9	2.47		443.8	45.3	473.6	48.3				
(22.2)	7/8	22.2	23.1		1.69					101.6	50.8	108.4	54.2
24		24.0	25.0	2.94		528.2	53.9	563.6	57.5				
25		25.0	26.0	3.19		573.1	58.4	611.5	62.4				
(25.4)	1	25.4	26.4		2.21					133.0	66.5	141.9	71.0
26		26.0	27.0	3.45		619.9	63.2	661.4	67.4				
27		27.0	28.1	3.72		668.5	68.2	713.3	72.7				
28		28.0	29.1	4.00		718.9	73.3	767.1	78.2				
(28.6)	1-1/8	28.6	29.7		2.80					168.4	84.2	179.7	89.9
29		29.0	30.2	4.29		770.4	78.6	822.1	83.8				
30		30.0	31.2	4.59		824.4	84.1	879.7	89.7				
31		31.0	32.2	4.90		880.3	89.8	939.4	95.8				
(31.8)	1-1/4	31.8	33.1		3.51					210.9	105.4	225.0	112.5
32		32.0	33.3	5.23		938.0	95.6	1,000.9	102.1				
33		33.0	34.3	5.56		997.6	101.7	1,064.5	108.5				
34		34.0	35.4	5.90		1,058.9	108.0	1,130.0	115.2				
(34.9)	1-3/8	34.9	36.3		4.20					252.3	126.1	269.2	134.6
35		35.0	36.4	6.25		1,122.1	114.4	1,197.4	122.1				
36		36.0	37.4	6.61		1,187.2	121.1	1,266.8	129.2				
38		38.0	39.5	7.37		1,322.8	134.9	1,411.5	143.9				
38.1)	1-1/2	38.1	39.6		4.95					297.4	148.7	317.3	158.6
40	40.0	41.6	8.16			1,465.7	149.4	1,564.0	159.5				

Begular Lay Lang's Lay Compacted Rotary Swaged Pi

Benefits of Hyfil 18

- Hyfil 18 is most suitable rope for multi spooling systems with rotation resistant ropes are required especially in the marine environment.
- Hyfil 18 has a plastic layer between the inner strands and outer strands and all strands are compacted.
- The steel-plastic combination increases structual stability.
- Hyfil 18 has an extremely high breaking strength with good resistance to drum crushing.
- The rope is fully lubricated and made out of galvanized /ungalvanizedwires.

Discard criteria

The basic designed data of hyfil 18

(The number of break in the load bearing wres in outer strands)								
Longth	Lang's Lay							
Length	6xd	30xd						
discard	6	11						

 Size
 16~40

 Total number of wire
 259

 Number of load-bearing wires in outer strands
 126

 The number of outer wire in outer strand
 108

 Average fill factor
 0.73

Nominal rope		Diameter		Appro	ximate	Minimum breaking force (Fmin, MBF)							
diameter		toler	ance	uni	t Wt.	Mertic unit				Imperial unit			
		min.	max.			1960	1960 Grade 2160		Grade	de 1960 Grade		2160 Grade	
mm	inch	mm	mm	kg/m	lb/ft	kN	t(metric)	kN	t(metric)	klb	t(short)	klb	t(short)
(15.9)	5/8	15.9	16.5		0.89					52.6	26.3	56.1	28.1
16		16.0	16.6	1.33		234.0	23.9	249.7	25.5				
18		18.0	18.7	1.68		296.2	30.2	316.0	32.2				
19		19.0	19.8	1.88		330.0	33.6	352.1	35.9				
(19.1)	3/4	19.1	19.9		1.26					74.2	37.1	79.2	39.6
20		20.0	20.8	2.08		365.3	37.2	389.8	39.7				
22		22.0	22.9	2.52		442.0	45.1	471.6	48.1				
(22.2)	7/8	22.2	23.1		1.72					101.2	50.6	108.0	54.0
24		24.0	25.0	2.99		526.0	53.6	561.3	57.2				
25		25.0	26.0	3.25		570.8	58.2	609.0	62.1				
(25.4)	1	25.4	26.4		2.25					132.4	66.2	141.3	70.7
26		26.0	27.0	3.51		617.3	62.9	658.7	67.2				
27		27.0	28.1	3.79		665.7	67.9	710.4	72.4				
28		28.0	29.1	4.07		716.0	73.0	764.0	77.9				
(28.6)	1-1/8	28.6	29.7		2.86					167.9	84.0	179.2	89.6
29		29.0	30.2	4.37		768.0	78.3	819.5	83.6				
30		30.0	31.2	4.68		821.1	83.7	876.1	89.3				
31		31.0	32.2	4.99		876.7	89.4	935.5	95.4				
(31.8)	1-1/4	31.8	33.1		3.58					210.0	105.0	224.1	112.0
32		32.0	33.3	5.32		934.2	95.3	996.8	101.6				
33		33.0	34.3	5.66		993.5	101.3	1,060.1	108.1				
34		34.0	35.4	6.01		1,054.6	107.5	1,125.3	114.7				
(34.9)	1-3/8	34.9	36.3		4.28					251.2	125.6	268.1	134.0
35		35.0	36.4	6.37		1,117.6	114.0	1,192.5	121.6				
36		36.0	37.4	6.74		1,182.3	120.6	1,261.6	128.6				
38		38.0	39.5	7.50		1,317.4	134.3	1,405.7	143.3				
(38.1)	1-1/2	38.1	39.6		5.04						148.1	316.0	158.0
40		40.0	41.6	8.32		1.459.7	148.8	1.557.6	158.8				

12 Product Advantages - Wire Quality - Compacted and rotary Swaged Strands - Comparison of Breaking Load

> Product Advantages - Plastic Layer - Bending Fatigue - Torque Factor

14

Wire Quality

- The quality and performance of Hyrope is fundamentally determined by the quality of component wires. It is absolutely impossible to achieve high performance when the rope is produced with inferior quality wires.
- The process of controlling the quality of wire begins with selection of high quality steel wire rods that can be manufactured by handful of world-class steel mills.
 Any defect or inconsistent microstructure of the rod is difficult to remove during wire production process, and could affect the quality of the final rope product.
- The wires are produced on modern, well cooled wire drawing machines, enabling the wires to retain the highest possible level of ductility. This is essential in order to deliver the maximum possible translation of wire strength into rope breaking load. Ductility of component wires is also a key factor in prolonged service life of rope.

Ductile Brittle

Comparison of Breaking Load

Hyrope products are designed not only to achieve greater tensile strength of the individual wires but also a combination of relative factors with high technology.

- Used only high quality wires that are produced in Kiswire's own drawing factory.
- Increased fill factor/metallic area of the rope through optimal compacting of the strands.
- Parallel lay with a plastic layer that substantially reduces the internal stresses of the rope.

Standard breaking strength of Hyrope is around 20~40% higher than a conventional rope to international standards of the same tensile grade and construction categories.

ISO2408

1.00

Items

Ratio

Compacted and rotary Swaged Strands

Most Hyrope products are made out of compacted strands. The strands are properly roller-compacted during the production process to improve the contact conditions between both the strands and the individual wires.

Benefits of Hyrope compacted strands

-Smooth Surface

-Linear contact between individual wires -Much higher breaking load with higher metallic area -Better contact between the rope surface and the sheaves -Far more resistant to abrasion and corrosion -Good constructional stability for the multi-layer spooling system

Breaking Load of Hyrope

Hylift 16

1.31

Plastic Layer

Steel-Plastic combination Long fatigue life The plastic layer of Hyrope acts as a cushion between the layers.

This plastic layer has many advantages ;

- prevents direct metal-to-metal contact
 Stabilizes the rope construction during installation and actual service
- · Keeps out water and harmful elements
- Seals in rope lubricant
- Removes the incidence of birdcaging
- Prevents internal wire breaks
- Absorbs dynamic energy
- Extremely reduces internal stress

Torque Factor

Hylift 16 and Hyfil 12 & 18 are rotation-resistant ropes with a steel core closed in the opposite direction to the outer strands.

When a load is applied, the core has the tendency to twist in one direction while the outer strands tend to rotate in the opposite direction.

The created moments in the core versus the created moments in the outer strands add to zero over a wide load spectrum.

Torque factor of Hyrope

of MBL	Hylift16	Hyfil12&18	Hyfil6&8	HyfilT8
5%	0.006	0.004	0.051	0.067
10%	0.007	0.006	0.069	0.075
15%	0.007	0.008	0.073	0.082
20%	0.008	0.008	0.075	0.085
			1. CALSTER 101	

Bending Fatigue

Fatigue test result of Hyrope(in-house test)

Experience has clearly demonstrated that the service life of the wire rope will be materially increased by strict adherence to these standards.

Torque Factor of Hyrope

